On a conjecture of Street and Whitehead on locally maximal product-free sets

نویسندگان

  • Chimere S. Anabanti
  • Sarah B. Hart
چکیده

Let S be a non-empty subset of a group G. We say S is product-free if S ∩ SS = ∅, and S is locally maximal if whenever T is product-free and S ⊆ T , then S = T . Finally S fills G if G∗ ⊆ S t SS (where G∗ is the set of all non-identity elements of G), and G is a filled group if every locally maximal product-free set in G fills G. Street and Whitehead [8] investigated filled groups and gave a classification of filled abelian groups. In this paper, we obtain some results about filled groups in the non-abelian case, including a classification of filled groups of odd order. Street and Whitehead conjectured that the finite dihedral group of order 2n is not filled when n = 6k + 1 (k ≥ 1). We disprove this conjecture on dihedral groups, and in doing so obtain a classification of locally maximal product-free sets of sizes 3 and 4 in dihedral groups, continuing earlier work in [1] and [6].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups whose locally maximal product - free sets are complete

Let G be a finite group and S a subset of G. Then S is product-free if S ∩ SS = ∅, and complete if G∗ ⊆ S ∪ SS. A product-free set is locally maximal if it is not contained in a strictly larger product-free set. If S is product-free and complete then S is locally maximal, but the converse does not necessarily hold. Street and Whitehead [11] defined a group G as filled if every locally maximal p...

متن کامل

A note on filled groups

Let G be a finite group and S a subset of G. Then S is product-free if S ∩ SS = ∅, and S fills G if G∗ ⊆ S ∪ SS. A product-free set is locally maximal if it is not contained in a strictly larger product-free set. Street and Whitehead [J. Combin. Theory Ser. A 17 (1974), 219–226] defined a group G as filled if every locally maximal product-free set in G fills G. Street and Whitehead classified a...

متن کامل

Locally maximal product - free sets of size 3

Let G be a group, and S a non-empty subset of G. Then S is product-free if ab / ∈ S for all a, b ∈ S. We say S is locally maximal product-free if S is product-free and not properly contained in any other product-free set. A natural question is what is the smallest possible size of a locally maximal product-free set in G. The groups containing locally maximal product-free sets of sizes 1 and 2 w...

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015